skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ali-Gombe, Aisha and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the last decade, userland memory forensics techniques and algorithms have gained popularity among practitioners, as they have proven to be useful in real forensics and cybercrime investigations. These techniques analyze and recover objects and artifacts from process memory space that are of critical importance in investigations. Nonetheless, the major drawback of existing techniques is that they cannot determine the origin and context within which the recovered object exists without prior knowledge of the application logic. Thus, in this research, we present a solution to close the gap between application-specific and application-generic techniques. We introduce OAGen, a post-execution and app-agnostic semantic analysis approach designed to help investigators establish concrete evidence by identifying the provenance and relationships between in-memory objects in a process memory image. OAGen utilizes Points-to analysis to reconstruct a runtime’s object allocation network. The resulting graph is then fed as an input into our semantic analysis algorithms to determine objects’ origin, context, and scope in the network. The results of our experiments exhibit OAGen’s ability to effectively create an allocation network even for memory-intensive applications with thousands of objects, like Facebook. The performance evaluation of our approach across fourteen different Android apps shows OAGen can efficiently search and decode nodes, and identify their references with a modest throughput rate. Further practical application of OAGen demonstrated in two case studies shows that our approach can aid investigators in the recovery of deleted messages and the detection of malware functionality in post-execution program analysis. 
    more » « less
  2. null (Ed.)
    There is a growing need for post-mortem analysis in forensics investigations involving mobile devices, particularly when application-specific behaviors must be analyzed. This is especially true for architectures such as Android, where traditional kernel-level memory analysis frameworks such as Volatility face serious challenges recovering and providing context for user-space artifacts. In this research work, we developed an app-agnostic userland memory analysis technique that targets the new Android Runtime (ART). Leveraging its latest memory allocation algorithms, called region-based memory management, we develop a system called DroidScraper that recovers vital runtime data structures for applications by enumerating and reconstructing allocated objects from a process memory image. The result of our evaluation shows DroidScraper can recover and decode nearly 90% of all live objects in all allocated memory regions. 
    more » « less